Open Access
Numéro
JDN
Volume 13, 2014
JDN 20 – Neutrons et Magnétisme
Numéro d'article 04001
Nombre de pages 21
Section Highlighted Examples
DOI https://doi.org/10.1051/sfn/20141304001
Publié en ligne 30 avril 2014
  • C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences, Berlin, 2011. [CrossRef]
  • L. Pauling, “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement,” J. Am. Chem. Soc., vol. 57, p. 2680, 1935. [CrossRef]
  • T. Ogitsu, F. Gygi, J. Reed, and M. Udagawa, “Geometrical frustration in an elemental solid: An Ising model to explain the defect structure of beta-rhombohedral boron,” Phys. Rev. B, vol. 81, p. 020102, 2010. [CrossRef]
  • D.P. Shoemaker, R. Seshadri, A.L. Hector, A. Llobet, T. Proffen, and C.J. Fennie, “Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O′ studied by neutron total scattering,” Phys. Rev. B, vol. 81, p. 144113, 2010. [CrossRef]
  • V.E. Fairbank, A.L. Thompson, R.I. Cooper, and A.L. Goodwin, “Charge-ice dynamics in the negative thermal expansion material Cd(CN)2,” Phys. Rev. B, vol. 86, p. 104113, 2012. [CrossRef]
  • I. Loa, R.J. Nelmes, L.F. Lundegaard, and M.I. McMahon, “Extraordinarily complex crystal structure with mesoscopic patterning in barium at high pressure,” Nat. Mat., vol. 11, p. 627, 2012. [CrossRef]
  • Y. Han, Y. Shokef, A.M. Alsayed, P. Yunker, T.C. Lubensky, and A.G. Yodh, “Geometric frustration in buckled colloidal monolayers,” Nature, vol. 456, p. 898, 2008. [CrossRef] [PubMed]
  • K. Binder and A.P. Young, “Spin-glasses - Experimental Facts, Theoretical Concepts, and Open Questions,” Rev. Mod. Phys., vol. 58, p. 801, 1986. [CrossRef]
  • T. Yildirim, “Origin of the 150 K Anomaly in LaFeAsO: Competing Antiferromagnetic Interactions, Frustration, and a Structural Phase Transition,” Phys. Rev. Lett., vol. 101, p. 057010, 2008. [CrossRef] [PubMed]
  • J. Schmalian and P.G. Wolynes, “Stripe Glasses: Self-Generated Randomness in a Uniformly Frustrated System,” Phys. Rev. Lett., vol. 85, p. 836, 2000. [CrossRef]
  • M.C. Diamantini, P. Sodano, and C.A. Trugenberger, “Topological order in frustrated Josephson junction arrays,” EPL, vol. 83, p. 21003, 2008. [CrossRef] [EDP Sciences]
  • H. Pais and J.R. Stone, “Exploring the Nuclear Pasta Phase in Core-Collapse Supernova Matter,” Phys. Rev. Lett., vol. 109, p. 151101, 2012. [NASA ADS] [CrossRef] [PubMed]
  • C.J. Pethick and D.G. Ravenhall, “Matter at Large Neutron Excess and the Physics of Neutron-Star Crusts,” Ann. Rev. Nuc. Part. Sci., vol. 45, p. 429, 1995. [NASA ADS] [CrossRef]
  • C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social dynamics,” Rev. Mod. Phys., vol. 81, p. 591, 2009. [CrossRef]
  • M.A. Dias, L.H. Dudte, L. Mahadevan, and C.D. Santangelo, “Geometric Mechanics of Curved Crease Origami,” Phys. Rev. Lett., vol. 109, p. 114301, 2012. [CrossRef]
  • B.G. Wensley, S. Batey, F.A.C. Bone, Z.M. Chan, N.R. Tumelty, A. Steward, L.G . Kwa, A. Borgia, and J. Clarke, “Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family,” Nature, vol. 463, p. 6858, 2010. [CrossRef]
  • P.W. Anderson, “Resonating valence bonds: A new kind of insulator?,” Mater. Res. Bull., vol. 8, p. 153, 1973. [CrossRef]
  • H.T. Diep, Frustrated Spin Systems. World Scientific, Singapore, 2004.
  • B. Normand, “Frontiers in frustrated magnetism,” Cont. Phys., vol. 50, p. 533, 2009. [CrossRef]
  • L. Balents, “Spin liquids in frustrated magnets,” Nature, vol. 464, p. 199, 2010. [CrossRef] [PubMed]
  • S.T. Bramwell and M.J.P. Gingras, “Spin ice state in frustrated magnetic pyrochlore materials,” Science, vol. 294, p. 1495, 2001. [CrossRef] [PubMed]
  • C.L. Henley, “The “Coulomb phase” in frustrated systems,” Ann. Rev. Cond. Matt. Phys., vol. 1, p. 179, 2010. [CrossRef]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Spin Ice, Fractionalization, and Topological Order,” Ann. Rev. Cond. Matt. Phys., vol. 3, p. 35, 2012. [CrossRef]
  • J.S. Gardner, M.J.P. Gingras, and J.E. Greedan, “Magnetic pyrochlore oxides,” Rev. Mod. Phys., vol. 82, p. 53, 2010. [CrossRef]
  • S.-H. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, T. Katsufuji, J.H. Chung, S. Park, S.-W. Cheong, and C. Broholm, “Frustrate Magnetism and Cooperative Phase Transitions in Spinels,” J. Phys. Soc. Japan, vol. 79, p. 011004, 2010. [CrossRef]
  • G.H. Wannier, “Antiferromagnetism - the Triangular Ising Net,” Phys. Rev., vol. 79, p. 357, 1950. [CrossRef]
  • R. Moessner and J.T. Chalker, “Properties of a classical spin liquid: The Heisenberg pyrochlore antiferromagnet,” Phys. Rev. Lett., vol. 80, p. 2929, 1998. [CrossRef]
  • R. Moessner and J.T. Chalker, “Low-temperature properties of classical geometrically frustrated antiferromagnets,” Phys. Rev. B, vol. 58, p. 12049, 1998. [CrossRef]
  • D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, “Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets,” Nature Physics, vol. 3, p. 487, 2007. [CrossRef]
  • M. Mourigal, M. Enderle, B. Fåk, R.K. Kremer, J.M. Law, A. Schneidewind, A. Hiess, and A. Prokofiev, “Evidence of a bond-nematic phase in LiCuVO4,” Phys. Rev. Lett., vol. 109, p. 027203, 2012. [CrossRef]
  • J. Villain, “Insulating spin glasses,” Z. Phys. B, vol. 33, p. 31, 1979. [CrossRef]
  • S. Ji, S.-H. Lee, C. Broholm, T.Y. Koo, W. Ratcliff, S.-W. Cheong, and P. Zschack, “Spin-Lattice Order in Frustrated ZnCr2O4,” Phys. Rev. Lett., vol. 103, p. 037201, 2009. [CrossRef]
  • B. Fåk, in conversation.
  • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering. Dover Publications, Inc., New York, 1978.
  • X.-G. Wen, “Quantum orders and symmetric spin liquids,” Phys. Rev. B, vol. 65, p. 165113, 2002. [CrossRef]
  • D.J. Thouless, Topological quantum numbers in nonrelativistic physics. World Scientific, Singapore, 1998.
  • G.E. Volovik, “Topology of Quantum Vacuum,” Lecture Notes in Physics, vol. 870, p. 343, 2012. [CrossRef]
  • G.E. Volovik, The Universe in a helium droplet. Oxford University Press, Oxford, 2009. [CrossRef]
  • M.J.P. Gingras, Spin Ice, in Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences, Berlin, 2011.
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Magnetic monopoles in spin ice,” Nature, vol. 451, p. 42, 2008. [CrossRef] [PubMed]
  • M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, and K.W. Godfrey, “Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7,” Phys. Rev. Lett., vol. 79, p. 2554, 1997. [CrossRef]
  • S.T. Bramwell and M.J. Harris, “Frustration in Ising-type spin models on the pyrochlore lattice,” J. Phys.: Condens. Matter, vol. 10, p. L215, 1998. [CrossRef]
  • P.W. Anderson, “Ordering and antiferromagnetism in ferrites,” Physical Review, vol. 102, p. 1008, 1956. [CrossRef]
  • W.F. Giauque and J.W. Stout, “The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273 K,” J. Am. Chem. Soc., vol. 58, pp. 1144–1150, 1936. [NASA ADS] [CrossRef]
  • A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, “Zero-point entropy in ‘spin ice’,” Nature, vol. 399, p. 333, 1999. [CrossRef]
  • S.T. Bramwell, M.J. Harris, B.C. den Hertog, M.J.P. Gingras, J.S. Gardner, D.F. McMorrow, A.R. Wildes, A.L. Cornelius, J.D.M. Champion, R.G. Melko, and T. Fennell, “Spin correlations in Ho2Ti2O7: A dipolar spin ice system,” Phys. Rev. Lett., vol. 87, p. 047205, 2001. [CrossRef] [PubMed]
  • R. Moessner, “Relief and generation of frustration in pyrochlore magnets by single-ion anisotropy,” Phys. Rev. B, vol. 57, p. 5587, 1998. [CrossRef]
  • S.V. Isakov, K. Gregor, R. Moessner, and S.L. Sondhi, “Dipolar spin correlations in classical pyrochlore magnets,” Phys. Rev. Lett., vol. 93, p. 167204, 2004. [CrossRef] [PubMed]
  • C.L. Henley, “Power-law spin correlations in pyrochlore antiferromagnets,” Phys. Rev. B, vol. 71, p. 014424, 2005. [CrossRef]
  • T.S. Pickles, T.E. Saunders, and J.T. Chalker, “Néel ordering from the Coulomb phase,” EPL, vol. 84, p. 36002, 2008. [CrossRef] [EDP Sciences]
  • P. Conlon and J.T. Chalker, “Spin Dynamics in Pyrochlore Heisenberg Antiferromagnets,” Phys. Rev. Lett., vol. 102, p. 237206, 2009. [CrossRef]
  • P.H. Conlon and J.T. Chalker, “Absent pinch points and emergent clusters: Further neighbor interactions in the pyrochlore Heisenberg antiferromagnet,” Phys. Rev. B, vol. 81, p. 224413, 2010. [CrossRef]
  • M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, “Oxide Pyrochlores - a Review,” Prog. Sol. St. Chem., vol. 15, p. 55, 1983. [CrossRef]
  • B.M. Wanklyn and G. Garton, “Crystal growth and magnetic susceptibility of some rare-earth compounds,” J. Mat. Sci., vol. 3, p. 395, 1968. [CrossRef]
  • G. Balakrishnan, O.A. Petrenko, M.R. Lees, and D.M. Paul, “Single crystal growth of rare earth titanate pyrochlores,” J. Phys.: Condens. Matt., vol. 10, p. L723, 1998. [CrossRef]
  • D. Prabhakaran and A.T. Boothroyd, “Crystal growth of spin-ice pyrochlores by the floating-zone method,” J. Cryst. Growth, vol. 318, p. 1053, 2011. [CrossRef]
  • G. Ehlers, A. Huq, S.O. Diallo, C. Adriano, K.C. Rule, A.L. Cornelius, P. Fouquet, P.G. Pagliuso, and J.S. Gardner, “Low energy spin dynamics in the spin ice Ho2Sn2O7,” J. Phys.: Cond. Matt., vol. 24, p. 076005, 2012. [CrossRef]
  • A.M. Hallas, J.A.M. Paddison, H.J. Silverstein, A.L. Goodwin, J.R. Stewart, A.R. Wildes, J.G. Cheng, J.S. Zhou, J.B. Goodenough, E.S. Choi, G. Ehlers, J.S. Gardner, C.R. Wiebe, and H.D. Zhou, “Statics and dynamics of the highly correlated spin ice Ho2Ge2O7,” Phys. Rev. B, vol. 86, p. 134431, 2012. [CrossRef]
  • H.D. Zhou, S.T. Bramwell, J.-G. Cheng, C.R. Wiebe, G. Li, L. Balicas, J.A. Bloxsom, H.J. Silverstein, J.-S. Zhou, J.B. Goodenough, and J.S. Gardner, “High pressure route to generate magnetic monopole dimers in spin ice,” Nat. Comm., vol. 2, p. 478, 2011. [CrossRef]
  • H.D. Zhou, J.G. Cheng, A.M. Hallas, C.R. Wiebe, G. Li, L. Balicas, J.S. Zhou, J.B. Goodenough, J.S. Gardner, and E.S. Choi, “Chemical Pressure Effects on Pyrochlore Spin Ice,” Phys. Rev. Lett., vol. 108, 2012.
  • J. Lago, I. Zivkovic, B.Z. Malkin, J. Rodriguez Fernandez, P. Ghigna, P. Dalmas de Réotier, A. Yaouanc, and T. Rojo, “CdEr2Se4: A New Erbium Spin Ice System in a Spinel Structure,” Phys. Rev. Lett., vol. 104, p. 247203, 2010. [CrossRef]
  • R.J. Aldus, T. Fennell, P.P. Deen, E. Ressouche, G.C. Lau, R.J. Cava, and S.T. Bramwell, “Ice rule correlations in stuffed spin ice,” New J. Phys., vol. 15, p. 013022, 2013. [CrossRef]
  • J.A.M. Paddison and A.L. Goodwin, “Empirical Magnetic Structure Solution of Frustrated Spin Systems,” Phys. Rev. Lett., vol. 108, p. 017204, 2012. [CrossRef]
  • S. Rosenkranz, A. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, “Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7,” J. Appl. Phys., vol. 87, p. 5914, 2000. [CrossRef]
  • H. Cao, A. Gukasov, I. Mirebeau, P. Bonville, C. Decorse, and G. Dhalenne, “Ising versus XY Anisotropy in Frustrated R2Ti2O7 Compounds as “Seen” by Polarized Neutrons,” Phys. Rev. Lett., vol. 103, p. 056402, 2009. [CrossRef] [PubMed]
  • B.C. den Hertog and M.J.P. Gingras, “Dipolar interactions and origin of spin ice in Ising pyrochlore magnets,” Phys. Rev. Lett., vol. 84, p. 3430, 2000. [CrossRef] [PubMed]
  • R.G. Melko, B.C. den Hertog, and M.J.P. Gingras, “Long-range order at low temperatures in dipolar spin ice,” Phys. Rev. Lett., vol. 87, p. 067203, 2001. [CrossRef]
  • T. Yavors'kii, T. Fennell, M.J.P. Gingras, and S.T. Bramwell, “Dy2Ti2O7 Spin Ice: A Test Case for Emergent Clusters in a Frustrated Magnet,” Phys. Rev. Lett., vol. 101, p. 37204, 2008. [CrossRef]
  • T. Fennell, O.A. Petrenko, B. Fåk, S.T. Bramwell, M. Enjalran, T. Yavors'kii, M.J.P. Gingras, R.G. Melko, and G. Balakrishnan, “Neutron Scattering Investigation of the Spin Ice State in Dy2Ti2O7,” Phys. Rev. B, vol. 70, p. 134408, 2004. [CrossRef]
  • M.J.P. Gingras and B.C. den Hertog, “Origin of spin-ice behavior in ising pyrochlore magnets with long-range dipole interactions: an insight from mean-field theory,” Can. J. Phys., vol. 79, p. 1339, 2001. [CrossRef]
  • S.V. Isakov, R. Moessner, and S.L. Sondhi, “Why spin ice obeys the ice rules,” Phys. Rev. Lett., vol. 95, p. 217201, 2005. [CrossRef] [PubMed]
  • T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. Mcmorrow, and S.T. Bramwell, “Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7,” Science, vol. 326, p. 415, 2009. [CrossRef] [PubMed]
  • D.A. Huse, W. Krauth, R. Moessner, and S.L. Sondhi, “Coulomb and liquid dimer models in three dimensions,” Phys. Rev. Lett., vol. 91, p. 167004, 2003. [CrossRef]
  • R. Moessner and S.L. Sondhi, “Three-dimensional resonating-valence-bond liquids and their excitations,” Phys. Rev. B, vol. 68, p. 184512, 2003. [CrossRef]
  • D. Charrier and F. Alet, “Phase diagram of an extended classical dimer model,” Phys. Rev. B, vol. 82, p. 014429, 2010. [CrossRef]
  • A.M. Läuchli, S. Capponi, and F.F. Assaad, “Dynamical dimer correlations at bipartite and non-bipartite Rokhsar-Kivelson points,” J. Stat. Mech., p. P01010, 2008.
  • I.A. Ryzhkin, “Magnetic relaxation in rare-earth oxide pyrochlores,” Journal Of Experimental And Theoretical Physics, vol. 101, p. 481, 2005. [CrossRef]
  • Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, and B. Fåk, “Kagome ice state in the dipolar spin ice Dy2Ti2O7,” Phys. Rev. Lett., vol. 97, p. 257205, 2006. [CrossRef]
  • T. Fennell, S.T. Bramwell, D.F. Mcmorrow, P. Manuel, and A.R. Wildes, “Pinch points and Kasteleyn transitions in kagome ice,” Nat. Phys., vol. 3, p. 566, 2007. [CrossRef]
  • R.W. Youngblood and J.D. Axe, “Neutron-scattering study of short-range order in a model two-dimensional ferroelectric,” Phys. Rev. B, vol. 17, p. 3639, 1978. [CrossRef]
  • R.W. Youngblood, J.D. Axe, and B.M. McCoy, “Correlations in ice-rule ferroelectrics,” Phys. Rev. B, vol. 21, p. 5212, 1980. [CrossRef]
  • R.W. Youngblood and J.D. Axe, “Polarization fluctuations in ferroelectric models,” Phys. Rev. B, vol. 23, p. 232, 1981. [CrossRef]
  • V.M. Nield and R.W. Whitworth, “The structure of ice Ih from analysis of single-crystal neutron diffuse scattering,” J. Phys.: Cond. Matt., vol. 7, p. 8259, 1995. [CrossRef]
  • “Recent x-ray scattering measurements seem not to show a pinchpoint, Vanko et al, ESRF Christmas Card, 2011.”
  • S. Yoshida, K. Nemoto, and K. Wada, “Application of the cluster variation method to spin ice systems on the pyrochlore lattice,” J. Phys. Soc. Jpn., vol. 71, p. 948, 2002. [CrossRef]
  • D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R.S. Perry, “Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7,” Science, vol. 326, p. 411, 2009. [CrossRef] [PubMed]
  • S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, and S.-W. Cheong, “Emergent excitations in a geometrically frustrated magnet,” Nature, vol. 418, p. 856, 2002. [CrossRef] [PubMed]
  • K. Tomiyasu, H. Suzuki, M. Toki, S. Itoh, M. Matsuura, N. Aso, and K. Yamada, “Molecular Spin Resonance in the Geometrically Frustrated Magnet MgCr2O4 by Inelastic Neutron Scattering,” Phys. Rev. Lett., vol. 101, p. 177401, 2008. [CrossRef]
  • K. Tomiyasu, H. Ueda, M. Matsuda, M. Yokoyama, K. Iwasa, and K. Yamada, “Molecular spin-liquid state in the spin-3/2 frustrated spinel HgCr2O4,” Phys. Rev. B, vol. 84, p. 035115, 2011. [CrossRef]
  • K. Kamazawa, S. Park, S.-H. Lee, T. Sato, and Y. Tsunoda, “Dissociation of spin objects in geometrically frustrated CdFe2O4,” Phys. Rev. B, vol. 70, p. 024418, 2004. [CrossRef]
  • J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T.J. Sato, H. Takagi, K.-P. Hong, and S. Park, “Statics and Dynamics of Incommensurate Spin Order in a Geometrically Frustrated Antiferromagnet CdCr2O4,” Physical Review Letters, vol. 95, p. 247204, Dec. 2005. [CrossRef]
  • L.J. Chang, Y. Su, Y.-J. Kao, Y.Z. Chou, R. Mittal, H. Schneider, T. Brueckel, G. Balakrishan, and M.R. Lees, “Magnetic correlations in the spin ice Ho2−xYxTi2O7 as revealed by neutron polarization analysis,” Phys. Rev. B, vol. 82, p. 172403, 2010. [CrossRef]
  • P.A.M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A, vol. 133, p. 60, 1931. [CrossRef]
  • A. Rajantie, “Introduction to magnetic monopoles,” Cont. Phys., vol. 53, p. 195, 2012. [CrossRef]
  • L.D.C. Jaubert and P.C.W. Holdsworth, “Signature of magnetic monopole and Dirac string dynamics in spin ice,” Nature Physics, vol. 5, p. 258, 2009. [CrossRef]
  • T. Fennell, O.A. Petrenko, B. Fåk, J.S. Gardner, S.T. Bramwell, and B. Ouladdiaf, “Neutron scattering studies of the spin ices Ho2Ti2O7 and Dy2Ti2O7 in applied magnetic field,” Phys. Rev. B, vol. 72, p. 224411, 2005. [CrossRef]
  • L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, and R. Moessner, “Three-dimensional Kasteleyn transition: Spin ice in a [100] field,” Phys. Rev. Lett., vol. 100, p. 067207, 2008. [CrossRef] [PubMed]
  • R.B. Laughlin and D. Pines, “The theory of everything,” PNAS, vol. 97, p. 28, 2000. [CrossRef]
  • P.W. Anderson, “More is Different - Broken Symmetry and Nature of Hierarchical Structure of Science,” Science, vol. 177, p. 393, 1972. [CrossRef] [PubMed]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Thermal Quenches in Spin Ice,” Phys. Rev. Lett., vol. 104, p. 107201, 2010. [CrossRef] [PubMed]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Debye-Hückel theory for spin ice at low temperature,” Phys. Rev. B, vol. 84, 2011. [CrossRef]
  • G. Sala, C. Castelnovo, R. Moessner, S.L. Sondhi, K. Kitagawa, M. Takigawa, R. Higashinaka, and Y. Maeno, “Magnetic Coulomb Fields of Monopoles in Spin Ice and Their Signatures in the Internal Field Distribution,” Phys. Rev. Lett., vol. 108, 2012. [CrossRef]
  • I.A. Ryzhkin, A.V. Klyuev, M.I. Ryzhkin, and I.V. Tsybulin, “Stability of the Coulomb phase in spin ice at finite temperature,” JETP Lett., vol. 95, p. 302, 2012. [CrossRef]
  • I.A. Ryzhkin and M.I. Ryzhkin, “Screening of the magnetic field by magnetic monopoles in spin ice,” JETP Lett., vol. 93, p. 384, 2011. [CrossRef]
  • P. Quémerais, P.A. McClarty, and R. Moessner, “Possible Quantum Diffusion of Polaronic Muons in Dy2Ti2O7 Spin Ice,” Phys. Rev. Lett., vol. 109, p. 127601, 2012. [CrossRef]
  • S.T. Bramwell, “Dimensional analysis, spin freezing and magnetization in spin ice,” J. Phys.: Cond. Matt., vol. 23, p. 112201, 2011. [CrossRef]
  • S.T. Bramwell, “Generalised Longitudinal Susceptibility for Magnetic Monopoles in Spin Ice,” Phil. Trans. Roy. Soc. A, vol. 370, p. 5738, 2012. [CrossRef]
  • C.L. Henley, arXiv:1210.8137. 2012.
  • H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, and Z. Hiroi, “Observation of Magnetic Monopoles in Spin Ice,” J. Phys. Soc. Jpn., vol. 78, p. 103706, 2009. [CrossRef]
  • J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, and J.B. Kycia, “Dynamics of the magnetic susceptibility deep in the Coulomb phase of the dipolar spin ice material Ho2Ti2O7,” Phys. Rev. B, vol. 83, p. 094424, 2011. [CrossRef]
  • K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, and S. Takagi, “Spin Dynamics at Very Low Temperature in Spin Ice Dy2Ti2O7,” J. Phys. Soc. Jpn., vol. 80, p. 123711, 2011. [CrossRef]
  • L.R. Yaraskavitch, H.M. Revell, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B. D. Gaulin, and J.B. Kycia, “Spin dynamics in the frozen state of the dipolar spin ice material Dy2Ti2O7,” Phys. Rev. B, vol. 85, 2012. [CrossRef]
  • D. Slobinsky, C. Castelnovo, R.A. Borzi, A.S. Gibbs, A.P. Mackenzie, R. Moessner, and S.A. Grigera, “Unconventional Magnetization Processes and Thermal Runaway in Spin-Ice Dy2Ti2O7,” Phys. Rev. Lett., vol. 105, p. 267205, 2010. [CrossRef] [PubMed]
  • S.R. Giblin, S.T. Bramwell, P.C.W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys., vol. 7, p. 252, 2011. [CrossRef]
  • S. Erfanifam, S. Zherlitsyn, J. Wosnitza, R. Moessner, O.A. Petrenko, G. Balakrishnan, and A.A. Zvyagin, “Intrinsic and extrinsic nonstationary field-driven processes in the spin-ice compound Dy2Ti2O7,” Phys. Rev. B, vol. 84, 2011. [CrossRef]
  • S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, “Measurement of the charge and current of magnetic monopoles in spin ice,” Nature, vol. 461, p. 956, 2009. [CrossRef]
  • S.R. Dunsiger, A.A. Aczel, C. Arguello, H.A. Dabkowska, A. Dabkowski, M.-H. Du, T. Goko, B. Javanparast, T. Lin, F.L. Ning, H.M.L. Noad, D.J. Singh, T.J. Williams, Y.J. Uemura, M.J.P. Gingras, and G.M. Luke, “Spin Ice: Magnetic Excitations without Monopole Signatures Using Muon Spin Rotation,” Phys. Rev. Lett., vol. 107, 2011. [CrossRef]
  • B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S.A. Grigera, and D.A. Tennant, “Thermal Relaxation and Heat Transport in the Spin Ice Material Dy2Ti2O7,” J. Low Temp. Phys., vol. 163, p. 345, 2011. [CrossRef]
  • G. Kolland, O. Breunig, M. Valldor, M. Hiertz, J. Frielingsdorf, and T. Lorenz, “Thermal conductivity and specific heat of the spin-ice compound Dy2Ti2O7: Experimental evidence for monopole heat transport,” Phys. Rev. B, vol. 86, p. 060402, 2012. [CrossRef]
  • M. Hermele, M.P.A. Fisher, and L. Balents, “Pyrochlore photons: The U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet,” Phys. Rev. B, vol. 69, p. 064404, 2004. [CrossRef]
  • K.A. Ross, L. Savary, B.D. Gaulin, and L. Balents, “Quantum Excitations in Quantum Spin Ice,” Physical Review X, vol. 1, p. 021002, 2011. [CrossRef]
  • L. Savary and L. Balents, “Coulombic Quantum Liquids in Spin-1/2 Pyrochlores,” Phys. Rev. Lett., vol. 108, 2012. [CrossRef] [PubMed]
  • O. Benton, O. Sikora, and N. Shannon, “Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice,” Phys. Rev. B, vol. 86, p. 075154, 2012. [CrossRef]
  • J.D. Thompson, P.A. McClarty, H.M. Rønnow, L.P. Regnault, A. Sorge, and M.J.P. Gingras, “Rods of Neutron Scattering Intensity in Yb2Ti2O7: Compelling Evidence for Significant Anisotropic Exchange in a Magnetic Pyrochlore Oxide,” Phys. Rev. Lett., vol. 106, p. 187202, 2011. [CrossRef]
  • J.A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys.: Cond. Matt., vol. 13, p. 9301, 2001. [CrossRef]
  • J.A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dalmas de Réotier, G. André, M. Rams, K. Królas, C. Ritter, P.C.M. Gubbens, C.T. Kaiser, P.J.C. King, and C. Baines, “First-Order Transition in the Spin Dynamics of Geometrically Frustrated Yb2Ti2O7,” Phys. Rev. Lett., vol. 88, p. 077204, 2002. [CrossRef] [PubMed]
  • Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsushita, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, “Ferromagnetic Transition of Pyrochlore Compound Yb2Ti2O7,” J. Phys. Soc. Jpn., vol. 72, p. 3014, 2003. [CrossRef]
  • J.S. Gardner, G. Ehlers, N. Rosov, R.W. Erwin, and C. Petrovic, “Spin-spin correlations in Yb2Ti2O7: A polarized neutron scattering study,” Phys. Rev. B, vol. 70, p. 180404, 2004. [CrossRef]
  • A. Yaouanc, P. Dalmas de Réotier, C. Marin, and V. Glazkov, “Single-crystal versus polycrystalline samples of magnetically frustrated Yb2Ti2O7: Specific heat results,” Phys. Rev. B, vol. 84, p. 172408, 2011. [CrossRef]
  • K.A. Ross, T. Proffen, H.A. Dabkowska, J.A. Quilliam, L.R. Yaraskavitch, J.B. Kycia, and B.D. Gaulin, “Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique,” Phys. Rev. B, vol. 86, p. 174424, 2012. [CrossRef]
  • L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai, and M.R. Lees, “Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7,” Nat. Comm., vol. 3, p. 992, 2012. [CrossRef]
  • K.A. Ross, J.P.C. Ruff, C.P. Adams, J.S. Gardner, H.A. Dabkowska, Y. Qiu, J.R.D. Copley, and B.D. Gaulin, “Two-Dimensional Kagome Correlations and Field Induced Order in the Ferromagnetic XY Pyrochlore Yb2Ti2O7,” Phys. Rev. Lett., vol. 103, p. 227202, 2009. [CrossRef] [PubMed]
  • K.A. Ross, L.R. Yaraskavitch, M. Laver, J.S. Gardner, J.A. Quilliam, S. Meng, J.B. Kycia, D.K. Singh, T. Proffen, H.A. Dabkowska, and B.D. Gaulin, “Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7,” Phys. Rev. B, vol. 84, p. 174442, 2011. [CrossRef]
  • R. Applegate, N.R. Hayre, R.R.P. Singh, T. Lin, A.G.R. Day, and M.J.P. Gingras, “Vindication of Yb2Ti2O7 as a Model Exchange Quantum Spin Ice,” Phys. Rev. Lett., vol. 109, p. 097205, 2012. [CrossRef]
  • R. Coldea, D.A. Tennant, K. Habicht, P. Smeibidl, C. Wolters, and Z. Tylczynski, “Direct Measurement of the Spin Hamiltonian and Observation of Condensation of Magnons in the 2D Frustrated Quantum Magnet Cs2CuCl4,” Phys. Rev. Lett., vol. 88, p. 137203, 2002. [CrossRef] [PubMed]
  • K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, and T. Sakakibara, “Low-temperature magnetic properties of pyrochlore stannates,” J. Phys. Soc. Japan, vol. 71, p. 1576, 2002. [CrossRef]
  • Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, “Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order,” Nature, vol. 463, p. 210, 2010. [CrossRef] [PubMed]
  • H.D. Zhou, C.R. Wiebe, J.A. Janik, L. Balicas, Y.J. Yo, Y. Qiu, J.R.D. Copley, and J.S. Gardner, “Dynamic Spin Ice: Pr2Sn2O7,” Phys. Rev. Lett., vol. 101, p. 227204, 2008. [CrossRef]
  • K. Matsuhira, C. Sekine, C. Paulsen, and Y. Hinatsu, “Low-temperature magnetic properties of the geometrically frustrated pyrochlore Pr2Sn2O7,” J. Mag. Mag. Mat., vol. 272, p. E981, 2004. [CrossRef]
  • S.B. Lee, S. Onoda, and L. Balents, “Generic quantum spin ice,” Phys. Rev. B, vol. 86, p. 104412, 2012. [CrossRef]
  • S. Onoda and Y. Tanaka, “Quantum Melting of Spin Ice: Emergent Cooperative Quadrupole and Chirality,” Phys. Rev. Lett., vol. 105, p. 047201, 2010. [CrossRef] [PubMed]
  • S. Onoda and Y. Tanaka, “Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides,” Phys. Rev. B, vol. 83, p. 094411, 2011. [CrossRef]
  • S. Saha, Sand Prusty, S. Singh, R. Suryanarayanan, A. Revcolevschi, and A.K. Sood, “Pyrochlore “dynamic spin-ice” Pr2Sn2O7 and monoclinic Pr2Ti2O7: A comparative temperature-dependent Raman study,” J. Sol. St. Chem., vol. 184, p. 2204, 2011. [CrossRef]
  • C.L. Broholm, HFM2012. 2012.
  • H.R. Molavian, M.J.P. Gingras, and B. Canals, “Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects,” Phys. Rev. Lett., vol. 98, p. 157204, 2007. [CrossRef] [PubMed]
  • J. Robert, B. Canals, V. Simonet, and R. Ballou, “Propagation and ghosts in the classical kagome antiferromagnet,” Phys. Rev. Lett., vol. 101, p. 117207, 2008. [CrossRef]
  • S. Schnabel and D.P. Landau, “Fictitious excitations in the classical Heisenberg antiferromagnet on the kagome lattice,” Phys. Rev. B, vol. 86, p. 014413, 2012. [CrossRef]
  • J.T. Chalker, P.C.W. Holdsworth, and E.F. Shender, “Hidden Order in a Frustrated System - Properties of the Heisenberg Kagome Antiferromagnet,” Phys. Rev. Lett., vol. 68, p. 855, 1992. [CrossRef] [PubMed]
  • M.E. Zhitomirsky, “Octupolar ordering of classical kagome antiferromagnets in two and three dimensions,” Phys. Rev. B, vol. 78, p. 094423, 2008. [CrossRef]
  • P. Mendels and A.S. Wills, Kagome antiferromagnets: materials vs. spin liquid behaviours. Springer Series in Solid-State Sciences, Berlin, 2011.
  • K. Matan, D. Grohol, D.G. Nocera, T. Yildirim, A.B. Harris, S.-H. Lee, S.E. Nagler, and Y.S. Lee, “Spin Waves in the Frustrated Kagomé Lattice Antiferromagnet KFe3(OH)6(SO4)2,” Phys. Rev. Lett., vol. 96, p. 247201, 2006. [CrossRef]
  • D. Grohol, K. Matan, J.-H. Cho, S.-H. Lee, J.W. Lynn, D.G. Nocera, and Y.S. Lee, “Spin chirality on a two-dimensional frustrated lattice,” Nat. Mat., vol. 4, p. 323, 2005. [CrossRef] [PubMed]
  • B. Fåk, F.C. Coomer, A. Harrison, D. Visser, and M.E. Zhitomirsky, “Spin liquid behavior in a kagomé antiferromagnet,” EPL, vol. 81, p. 17006, 2008. [CrossRef] [EDP Sciences]
  • J. Robert, V. Simonet, B. Canals, R. Ballou, P. Bordet, P. Lejay, and A. Stunault, “Spin-liquid correlations in the Nd-langasite anisotropic kagome antiferromagnet,” Phys. Rev. Lett., vol. 96, p. 197205, 2006. [CrossRef]
  • A.S. Wills and J.Y. Henry, “On the crystal and magnetic ordering structures of clinoatacamite, gamma-Cu2 (OD) 3Cl, a proposed valence bond solid,” J. Phys.: Cond. Matt., vol. 20, p. 472206, 2008. [CrossRef]
  • M.P. Shores, E.A. Nytko, B.M. Bartlett, and D.G. Nocera, “A Structurally Perfect S = 1/2 Kagomé Antiferromagnet,” J. Am. Chem. Soc., vol. 127, p. 13462, 2007. [CrossRef] [PubMed]
  • R.H. Colman, C. Ritter, and A.S. Wills, “Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet,” Chem. Mat., vol. 20, p. 6897, 2008. [CrossRef]
  • S. Chu, T.M. McQueen, R. Chisnell, D.E. Freedman, P. Müller, Y.S. Lee, and D.G. Nocera, “A Cu2+(S = 1/2) Kagomé Antiferromagnet: MgxCu4−x(OH)6Cl2,” J. Am. Chem. Soc., vol. 132, p. 5570, 2010. [CrossRef]
  • R.H. Colman, A. Sinclair, and A.S. Wills, “Comparisons between Haydeeite, α-Cu3Mg(OD)6Cl2, and Kapellasite, α-Cu3Zn(OD)6Cl2, Isostructural S = 1/2 Kagome Magnets,” Chem. Mat., vol. 22, p. 5774, 2010. [CrossRef]
  • R.H. Colman, A. Sinclair, and A.S. Wills, “Magnetic and Crystallographic Studies of Mg-Herbertsmithite, γ-Cu3Mg(OH)6Cl2-A New S = 1/2 Kagome Magnet and Candidate Spin Liquid,” Chem. Mat., vol. 23, p. 1811, 2011. [CrossRef]
  • E. Kermarrec, P. Mendels, F. Bert, R.H. Colman, A.S. Wills, P. Strobel, P. Bonville, A. D. Hillier, and A. Amato, “Spin-liquid ground state in the frustrated kagome antiferromagnet MgCu3(OH)6Cl2,” Phys. Rev. B, vol. 84, p. 100401, 2011. [CrossRef]
  • D.E. Freedman, T.H. Han, A. Prodi, P. Müller, Q.-Z. Huang, Y.-S. Chen, S.M. Webb, Y. S. Lee, T.M. Mcqueen, and D.G. Nocera, “Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated Kagomé Magnet, Herbertsmithite, ZnCu3(OH)6Cl2,” J. Am. Chem. Soc., vol. 132, p. 16185, 2010. [CrossRef]
  • Y.S. Lee, HFM2012. 2012.
  • A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Lohneysen, E. Bucher, R. Ramazashvili, and P. Coleman, “Onset of antiferromagnetism in heavy-fermion metals,” Nature, vol. 407, p. 351, 2000. [CrossRef] [PubMed]
  • M.C. Aronson, R. Osborn, R.A. Robinson, J.W. Lynn, R. Chau, C.L. Seaman, and M.B. Maple, “Non-Fermi-Liquid Scaling of the Magnetic Response in UCu5−xPdx (x = 1,1.5),” Phys. Rev. Lett., vol. 75, p. 725, 1995. [CrossRef]
  • B. Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W. Erwin, M.A. Kastner, and G. Shirane, “Scaling Behaviour of the Generalized Susceptibility in La2−xSrxCuO4+y,” Phys. Rev. Lett., vol. 67, p. 1930, 1991. [CrossRef] [PubMed]
  • S.M. Hayden, G. Aeppli, H. Mook, D. Rytz, M.F. Hundley, and Z. Fisk, “Magnetic Fluctuations in La1.95Ba0.05CuO4,” Phys. Rev. Lett., vol. 66, p. 821, 1991. [CrossRef] [PubMed]
  • S. Sachdev and J. Ye, “Gapless Spin-Fluid Ground-State in a Random Quantum Heisenberg Magnet,” Phys. Rev. Lett., vol. 70, p. 3339, 1993. [CrossRef] [PubMed]
  • S. Sachdev and J. Ye, “Universal Quantum-Critical Dynamics of 2-Dimensional Antiferromagnets,” Phys. Rev. Lett., vol. 69, p. 2411, 1992. [CrossRef] [PubMed]
  • T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M.P.A. Fisher, “Deconfined quantum critical points,” Science, vol. 303, p. 1490, 2004. [CrossRef] [PubMed]
  • N. Bernhoeft, “An analysis of the dynamical magnetic susceptibility in non-Fermi liquids,” J. Phys.: Cond. Matt., vol. 13, p. R771, 2001. [CrossRef]
  • J.S. Helton, K. Matan, M.P. Shores, E.A. Nytko, B.M. Bartlett, Y. Qiu, D.G. Nocera, and Y. S. Lee, “Dynamic Scaling in the Susceptibility of the Spin-1/2 Kagome Lattice Antiferromagnet Herbertsmithite,” Phys. Rev. Lett., vol. 104, p. 147201, 2010. [CrossRef]
  • B. Fåk, E. Kermarrec, L. Messio, B. Bernu, C. Lhuillier, F. Bert, P. Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A.D. Hillier, A. Amato, R.H. Colman, and A.S. Wills, “Kapellasite: A Kagome Quantum Spin Liquid with Competing Interactions,” Phys. Rev. Lett., vol. 109, p. 037208, 2012. [CrossRef]
  • M.A. De Vries, J.R. Stewart, P.P. Deen, J.O. Piatek, G.J. Nilsen, H.M. Rønnow, and A. Harrison, “Scale-Free Antiferromagnetic Fluctuations in the s = 1/2 Kagome Antiferromagnet Herbertsmithite,” Phys. Rev. Lett., vol. 103, p. 237201, 2009. [CrossRef] [PubMed]
  • L. Messio, B. Bernu, and C. Lhuillier, “Kagome Antiferromagnet: A Chiral Topological Spin Liquid?,” Phys. Rev. Lett., vol. 108, 2012. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.