EDP Sciences logo
Web of Conferences logo
Open Access
Numéro
EPJ Web of Conferences
Volume 104, 2015
JDN 21 - Neutrons and Materials for Energy
Numéro d'article 01002
Nombre de pages 53
Section Application of Neutrons Scattering Techniques to Materials for Energy
DOI https://doi.org/10.1051/epjconf/201510401002
Publié en ligne 16 octobre 2015
  • G. Binnig, H. Rohrer, Scanning tunneling microscopy, 126 (1983) 236–244. doi: 10.1016/0039-6028(83)90716-1 [Google Scholar]
  • G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope (1986). doi:10.1103/PhysRevLett.56.930 [Google Scholar]
  • P.W. Atkins, R. Friedman, Molecular Quantum Mechanics, 5 ed., Oxford University Press, 2011 [Google Scholar]
  • D. Halliday, R. Resnick, K.S. Krane, Physics, Volume 2, 5 ed., Wiley, 2002 [Google Scholar]
  • H. Schober, S. Rols, Les excitations dans la matière condensée : vibrations et phonons, 10 (2010) 3–136. doi: 10.1051/sfn/2010001 [Google Scholar]
  • L. Koester, W.B. Yelon, Compilation of Low Energy Neutron Scattering Lengths and Cross Sections, ECN, 1982 [Google Scholar]
  • S. Mughabghab, Neutron Cross Sections, 1 (2012) 828 [Google Scholar]
  • V. McLane, Neutron Cross Sections, 2 (2012) 850 [Google Scholar]
  • R.P. Feynman, Diffraction, in: Feynman Lectures on Physics, Volume 1, Addison Wesley Publishing Company, Reading, Massachusetts, 1963 [Google Scholar]
  • J.D. Patterson, B.C. Bailey, Solid-State Physics (2010) 849 [Google Scholar]
  • M.J. Buerger, Elementary crystallography, Wiley, New York, 1956 [Google Scholar]
  • N.W. Ashcroft, D. Mermin, Solid State Physics, 1st ed., Thomson Learning, Stamford, 1976 [Google Scholar]
  • A.R. West, Solid State Chemistry and its Applications, John Wiley & Sons, 2014 [Google Scholar]
  • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge University Press, 2012 [CrossRef] [Google Scholar]
  • W. Marshall, S.W. Lovesey, Theory of thermal neutron scattering: the use of neutrons for the investigation of condensed matter (1971) 599 [Google Scholar]
  • L. Van Hove, Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles, Phys Rev. 95 (1954) 249–262. doi:10.1103/PhysRev.95.249 [Google Scholar]
  • G. Placzek, The Scattering of Neutrons by Systems of Heavy Nuclei, Phys Rev. 86 (1952) 377–388. doi:10.1103/PhysRev.86.377 [Google Scholar]
  • J. Yarnell, M. Katz, R. Wenzel, S. Koenig, Structure Factor and Radial Distribution Function for Liquid Argon at 85 K, Phys. Rev. A. 7 (1973) 2130–2144. doi:10.1103/PhysRevA.7.2130 [CrossRef] [Google Scholar]
  • P.P. Ewald, Introduction to the dynamical theory of X-ray diffraction, Acta Cryst A. 25 (1969) 103–108. doi:10.1107/S0567739469000155 [CrossRef] [Google Scholar]
  • R.A. Young, R.A. Young, The Rietveld Method, Oxford University Press, 1995 [Google Scholar]
  • T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks, Newnes, 2012 [Google Scholar]
  • H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J Appl Cryst. 2 (1969) 65–71. doi:10.1107/S0021889869006558 [Google Scholar]
  • G. Caglioti, A. Paoletti, F.P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nuclear Instruments. 3 (1958) 223–228. doi:10.1016/0369-643X(58)90029-X [CrossRef] [Google Scholar]
  • A. Le Bail, Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffraction. 20 (2005) 316. doi:10.1154/1.2135315 [CrossRef] [Google Scholar]
  • J. Rodríguez-Carvajal, Recent Developments of the Program FULLPROF, Com Pow Diff (IUCr) Newslett. 26 (2001) 12–19 [Google Scholar]
  • E.J. Mittemeijer, P. Scardi, Diffraction Analysis of the Microstructure of Materials, Springer Science & Business Media, 2004 [CrossRef] [Google Scholar]
  • J. Rodríguez-Carvajal, M.T. Fernandez-Diaz, J.L. Martínez, Neutron diffraction study on structural and magnetic properties of La2NiO4, J Phys Condens Matter. 3 (1991) 3215–3234. doi:10.1088/0953-8984/3/19/002 [CrossRef] [Google Scholar]