EDP Sciences logo
Web of Conferences logo
Open Access
Numéro
EPJ Web Conf.
Volume 236, 2020
JDN 24 - Neutrons and Biology
Numéro d'article 03002
Nombre de pages 10
Section Small-angle Scattering
DOI https://doi.org/10.1051/epjconf/202023603002
Publié en ligne 1 juillet 2020
  • D.I. Svergun, M.H.J. Koch, P.A. Timmins, R.P. May, Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules. I.U.o. Crystallography, Ed., IUCr Monographs on Crystallography (Oxford University Press, Oxford, 2013). [Google Scholar]
  • C.D. Putnam, M. Hammel, G.L. Hura, J.A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics 40, 191-285 (2007). [CrossRef] [PubMed] [Google Scholar]
  • E. Mahieu, F. Gabel, Biological small-angle neutron scattering: recent results and development. Acta Crystallographica Section D 74, 715-726 (2018). [Google Scholar]
  • F. Gabel, S. Engilberge, J. Pérez, E. Girard, Medical contrast media as possible tools for SAXS contrast variation. IUCrJ 6, 521-525 (2019). [CrossRef] [PubMed] [Google Scholar]
  • C.M. Jeffries et al., Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 11, 2122-2153 (2016). [Google Scholar]
  • M. Haertlein et al., in Methods in Enzymology, Z. Kelman, Ed. (Academic Press, 2016), vol. 566, pp. 113-157. [CrossRef] [PubMed] [Google Scholar]
  • M. Jasnin, M. Moulin, M. Haertlein, G. Zaccai, M. Tehei, Down to atomic-scale intracellular water dynamics. EMBO Rep 9, 543-547 (2008). [CrossRef] [PubMed] [Google Scholar]
  • Z. Ibrahim et al., Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase. Scientific Reports 7, 40948 (2017). [CrossRef] [PubMed] [Google Scholar]
  • A.L. Goldberg, Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899 (2003). [Google Scholar]
  • E.U. Weber-Ban, B.G. Reid, A.D. Miranker, A.L. Horwich, Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90-93 (1999). [Google Scholar]
  • S. Gottesman, E. Roche, Y. Zhou, R.T. Sauer, The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes & development 12, 1338-1347 (1998). [CrossRef] [PubMed] [Google Scholar]
  • D. Franke et al., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of Applied Crystallography 50, 1212-1225 (2017). [CrossRef] [PubMed] [Google Scholar]
  • N. Benaroudj, P. Zwickl, E. Seemüller, W. Baumeister, A.L. Goldberg, ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Molecular Cell 11, 69-78 (2003). [CrossRef] [PubMed] [Google Scholar]
  • J. Trewhella et al., 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallographica Section D 73, 710-728 (2017). [Google Scholar]
  • J.C. Brooks-Bartlett et al., Development of tools to automate quantitative analysis of radiation damage in SAXS experiments. Journal of Synchrotron Radiation 24, 63-72 (2017). [CrossRef] [PubMed] [Google Scholar]