Open Access
Numéro
JDN
Volume 10, 2010
Page(s) 529 - 543
Section Illustrations dans différents domaines
DOI https://doi.org/10.1051/sfn/2010012
Publié en ligne 7 juin 2010
  • Sales B. C., Mandrus D., Chakoumakos B. C., Keppens V., Thompson J. R.. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B, 56:15081, 1997. [Google Scholar]
  • C.Uher. Skutterudite-based thermoelectrics. Rowe M., editor, Thermoelectrics Handbook - Macro to Nano, pages 34–1. CRC Taylor, Francis, 2006. [Google Scholar]
  • Hiroi Z., Yonezawa S., Nagao Y., Yamaura J.. Extremely strong-coupling superconductivity and anomalous lattice properties in the beta-pyrochlore oxide KOs2O6. Phys. Rev. B, 76:014523, 2007. [Google Scholar]
  • Tse J.S., Klug D.D.. Recent trends for the optimization of thermoelectric materials - a theoretical perspective. M. Rowe, editor, Thermoelectrics Handbook - Macro to Nano, p. 8–1. CRC Taylor and Francis, 2006. [Google Scholar]
  • Blundell J.S., Blundell K.M.. Concepts in Thermal Physics. Oxford University Press, Oxford New York, 2006. [Google Scholar]
  • Schober H.. Les excitations dans la matière condensé. Vibrations et phonons. S.Petit, S.Rols, dans ce même ouvrage. Editions de Physiqye, 2009. [Google Scholar]
  • Lortz R., Viennois R., Petrovic A., Wang Y., Toulemonde P., Meingast C., Koza M. M., Mutka H., Bosak A., San A. Miguel. Phonon density of states, anharmonicity, electron-phonon coupling, and possible multigap superconductivity in the clathrate superconductors Ba8Si46 and Ba24Si100: Factors behind the large difference in Tc. Phys. Rev. B, 77:224507, 2008. [Google Scholar]
  • Debye P.. Zur theorie der spezifischen wärmen. Ann. Physik, 344:789, 1912. [Google Scholar]
  • Einstein A.. Die plancksche theorie der strahlung und die theorie der spezifischen wärme. Ann. Physik, 327:180, 1907. [Google Scholar]
  • Schober H., Itoh H., Klapproth A., Chihaia V., Kuhs W.F.. Guest-host coupling and anharmonicity in clathrate hydrates. Eur. Phys. J. E, 12:41, 2003. [Google Scholar]
  • Stoneham A.M.. Theory of defects in solids. Oxford University Press, Oxford, 1985. [Google Scholar]
  • Taylor D.W.. Dynamics of impurities in crystals. A.A.MaradudinG.K.Horton, editor, Dynamical Properties of Solids, volume 2, pages 285– 384. North Holland, Amsterdam, 1975. [Google Scholar]
  • Harrison A.W.. Solid State Theory. McGraw -Hill, New York, 1970. [Google Scholar]
  • Sievers A.J., Takeno S.. Isotope shift of a low-lying lattice resonant mode. Phys. Rev., 140:A1031, 1965. [Google Scholar]
  • Cunnigham R.M., Muhlestein L.D, Shaw W.M., Tompson C.W.. Investigation of in-band resonant modes in Cr-W alloys by inelastic neutron scattering. Phys. Rev. B, 2:4864, 1970. [Google Scholar]
  • Nicklow R.M., Vijayareghavan P.R., Smith H.G., Wilkinson M.K.. Observation of localized vibrations in Cu-4% Al by coherent inelastic neutron scattering. Phys. Rev. Lett., 20:1245, 1968. [Google Scholar]
  • Caplin A.D., Grüner G., Dunlop J.B.. Al10V: An Einstein solid. Phys. Rev. Lett., 30:1138, 1973. [Google Scholar]
  • Caplin A.D., Nicholson L.K.. The strange case of Al10V: well defined local modes in a a metallic solid. J. Phys. F: Metal. Phys., 8:51, 1978. [Google Scholar]
  • Legg G.J., Lanchester P.C.. The low temperature thermal expansion of Al10V. J. Phys. F: Metal. Phys., 8:2125, 1978. [Google Scholar]
  • Schober H.. Spectroscopie neutronique, un outil idéal pour le scientifique des matériaux.W.Paulus, J.Meinnel, Neutrons et matèriaux, vol. 103J. de Physique IV,page 173. Edition de physique, 2003. [Google Scholar]
  • Johnson M.R., Zbiri M., Gonzalez M., Pellegrini E., Calligari P., Capogna L., Farhi E., Filhol A., Ghosh R., Richard D.. Inelastic neutron scattering and atomistic simulations.S.Petit and S.Rols, dans ce même ouvrage. 2009. [Google Scholar]
  • Johnson M.R., Koza M.M., Capogna L., Mutka H. Probing coupling between ‘rattling’ and extended lattice modes using time-of-flight neutron scattering combined with ab-initio calculations—introducing the PALD method. Nucl. Instr. and Meth. A, 600:226, 2009. [Google Scholar]
  • Muller C.. Diffraction des neutrons: principe, dispositifs expérimentaux et applications. W. Paulus, J. Meinnel, Neutrons et matèriaux, volume 103J. de Physique IV, page 173. Edition de physique, 2003. [Google Scholar]
  • Dahm T., Ueda K.. NMR relaxation and resistivity from rattling phonons in pyrochlore superconductors. Phys. Rev. Lett., 99:187003, 2007. [Google Scholar]
  • Keppens V., Mandrus D., Sales B.C., Chakoumakos B.C., Dai P., Coldea R., Maple M.B., Gajewski D. A., Freeman E.J., Bennington S.. Localized vibrational modes in metallic solids. Nature, 395:876, 1998. [Google Scholar]
  • Viennois R., Girard L., Ravot D., Mutka H., Koza M., Terki F., Charar S., and Tedenac J.C.. Inelastic neutron scattering experiments on antimony-based filled skutterudites. Physica B, page e403, 2004. [Google Scholar]
  • Viennois R., Girard L., Koza M., Mutka H., Ravot D., Terki F., Charar S., Tedenac J.C.. Experimental determination of the phonon density of states in filled skutterudites - evidence of a localised mode of the filling atom. Phys. Chem. Chem. Phys., 7:1617, 2005. [Google Scholar]
  • Koza M.M., Johnson M.R., Viennois R., Mutka H., Girard L., Ravot D.. Dynamics of La and Ce filled XFe4Sb12 skutterudites. M.Rotter, editor, XXV International Conference on Thermoelectrics, volume In EEE cat no 06TH8931, page 71, Vienna (Austria), 2006. IEEE. [Google Scholar]
  • Koza M.M., Johnson M. R., Viennois R., Mutka H., Girard L., Ravot D.. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nature Mater., 7(10):805, 2008. [Google Scholar]
  • Hermann R.P., Jin R., Schweika W., Grandjean F., Mandrus D., Sales B. C., Long G. J.. Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett., 90:135505, 2003. [Google Scholar]
  • Hermann R. P., Grandjean F., Long G. J.. Einstein oscillators that impede thermal transport. Am. J. Phys., 73:110, 2004. [Google Scholar]
  • Mutka H., Koza M.M., Johnson M.R., Hiroi Z., Yamaura J.-I., Nagao Y.. Generalized density-of-states and anharmonicity of the low-energy phonon bands from coherent inelastic neutron scattering response in beta–pyrochlore osmates AOs2O6(A=K,Rb,Cs). Phys. Rev. B, 78:104307, 2008. [Google Scholar]
  • Yamaura J.-I., Yonezawa S., Muraoka Y., Hiroi Z.. Crystal structure of the pyrochlore oxide superconductor KOs2O6. J. Solid St. Chem, 179:336, 2006. [Google Scholar]
  • Kuneš J., Jeong T., Pickett W. E.. Correlation effects and structural dynamics in the β-pyrochlore superconductor KOs2O6. Phys. Rev. B, 70:174510, 2004. [Google Scholar]
  • Kuneš J., Pickett W. E.. Frustration in the coupled rattler system KOs2O6. Phys. Rev. B, 74:094302, 2006. [Google Scholar]
  • Galati R., Simon C., Henry P. F., Weller M.T.. Cation displacements and the structures of the superconducting pyrochlore osmates AOs2O6 (A = K, Rb, and Cs). Phys. Rev. B, 77:104523, 2008. [Google Scholar]
  • Yamaura J.-I., Hiroi Z., Tsuda K., Izawa K., Oshishi Y., and Tsutsui S.. Re-examination of crystal structure of the β-pyrochlore oxide superconductor KOs2O6 by x-ray and covergent beam electron diffraction analyses. Solid. St. Commun., 149:31, 2009. [Google Scholar]
  • Sasai K., Hirota K., Nagao Y., Yonezawa S., Hiroi Z.. Neutron scattering study of the localized mode in the β-pyrochlore superconductors AOs2O6. J. Phys. Soc. Japan, 76:104603, 2007. [Google Scholar]
  • Hasegawa T., Takasu Y., Ogita N., Udagawa M., Yamaura J.-I., Nagao Y., Hiroi Z.. Raman scattering on KOs2O6. Phys. Rev. B, 77:064303, 2008. [Google Scholar]