EDP Sciences logo
Web of Conferences logo
Open Access
Numéro
JDN
Volume 13, 2014
JDN 20 – Neutrons et Magnétisme
Numéro d'article 04001
Nombre de pages 21
Section Highlighted Examples
DOI https://doi.org/10.1051/sfn/20141304001
Publié en ligne 30 avril 2014
  • C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences, Berlin, 2011. [CrossRef] [Google Scholar]
  • L. Pauling, “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement,” J. Am. Chem. Soc., vol. 57, p. 2680, 1935. [CrossRef] [Google Scholar]
  • T. Ogitsu, F. Gygi, J. Reed, and M. Udagawa, “Geometrical frustration in an elemental solid: An Ising model to explain the defect structure of beta-rhombohedral boron,” Phys. Rev. B, vol. 81, p. 020102, 2010. [CrossRef] [Google Scholar]
  • D.P. Shoemaker, R. Seshadri, A.L. Hector, A. Llobet, T. Proffen, and C.J. Fennie, “Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O′ studied by neutron total scattering,” Phys. Rev. B, vol. 81, p. 144113, 2010. [CrossRef] [Google Scholar]
  • V.E. Fairbank, A.L. Thompson, R.I. Cooper, and A.L. Goodwin, “Charge-ice dynamics in the negative thermal expansion material Cd(CN)2,” Phys. Rev. B, vol. 86, p. 104113, 2012. [CrossRef] [Google Scholar]
  • I. Loa, R.J. Nelmes, L.F. Lundegaard, and M.I. McMahon, “Extraordinarily complex crystal structure with mesoscopic patterning in barium at high pressure,” Nat. Mat., vol. 11, p. 627, 2012. [CrossRef] [Google Scholar]
  • Y. Han, Y. Shokef, A.M. Alsayed, P. Yunker, T.C. Lubensky, and A.G. Yodh, “Geometric frustration in buckled colloidal monolayers,” Nature, vol. 456, p. 898, 2008. [CrossRef] [PubMed] [Google Scholar]
  • K. Binder and A.P. Young, “Spin-glasses - Experimental Facts, Theoretical Concepts, and Open Questions,” Rev. Mod. Phys., vol. 58, p. 801, 1986. [CrossRef] [Google Scholar]
  • T. Yildirim, “Origin of the 150 K Anomaly in LaFeAsO: Competing Antiferromagnetic Interactions, Frustration, and a Structural Phase Transition,” Phys. Rev. Lett., vol. 101, p. 057010, 2008. [CrossRef] [PubMed] [Google Scholar]
  • J. Schmalian and P.G. Wolynes, “Stripe Glasses: Self-Generated Randomness in a Uniformly Frustrated System,” Phys. Rev. Lett., vol. 85, p. 836, 2000. [CrossRef] [Google Scholar]
  • M.C. Diamantini, P. Sodano, and C.A. Trugenberger, “Topological order in frustrated Josephson junction arrays,” EPL, vol. 83, p. 21003, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
  • H. Pais and J.R. Stone, “Exploring the Nuclear Pasta Phase in Core-Collapse Supernova Matter,” Phys. Rev. Lett., vol. 109, p. 151101, 2012. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • C.J. Pethick and D.G. Ravenhall, “Matter at Large Neutron Excess and the Physics of Neutron-Star Crusts,” Ann. Rev. Nuc. Part. Sci., vol. 45, p. 429, 1995. [Google Scholar]
  • C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social dynamics,” Rev. Mod. Phys., vol. 81, p. 591, 2009. [CrossRef] [Google Scholar]
  • M.A. Dias, L.H. Dudte, L. Mahadevan, and C.D. Santangelo, “Geometric Mechanics of Curved Crease Origami,” Phys. Rev. Lett., vol. 109, p. 114301, 2012. [CrossRef] [Google Scholar]
  • B.G. Wensley, S. Batey, F.A.C. Bone, Z.M. Chan, N.R. Tumelty, A. Steward, L.G . Kwa, A. Borgia, and J. Clarke, “Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family,” Nature, vol. 463, p. 6858, 2010. [CrossRef] [Google Scholar]
  • P.W. Anderson, “Resonating valence bonds: A new kind of insulator?,” Mater. Res. Bull., vol. 8, p. 153, 1973. [CrossRef] [Google Scholar]
  • H.T. Diep, Frustrated Spin Systems. World Scientific, Singapore, 2004. [Google Scholar]
  • B. Normand, “Frontiers in frustrated magnetism,” Cont. Phys., vol. 50, p. 533, 2009. [CrossRef] [Google Scholar]
  • L. Balents, “Spin liquids in frustrated magnets,” Nature, vol. 464, p. 199, 2010. [CrossRef] [PubMed] [Google Scholar]
  • S.T. Bramwell and M.J.P. Gingras, “Spin ice state in frustrated magnetic pyrochlore materials,” Science, vol. 294, p. 1495, 2001. [CrossRef] [PubMed] [Google Scholar]
  • C.L. Henley, “The “Coulomb phase” in frustrated systems,” Ann. Rev. Cond. Matt. Phys., vol. 1, p. 179, 2010. [CrossRef] [Google Scholar]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Spin Ice, Fractionalization, and Topological Order,” Ann. Rev. Cond. Matt. Phys., vol. 3, p. 35, 2012. [CrossRef] [Google Scholar]
  • J.S. Gardner, M.J.P. Gingras, and J.E. Greedan, “Magnetic pyrochlore oxides,” Rev. Mod. Phys., vol. 82, p. 53, 2010. [Google Scholar]
  • S.-H. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, T. Katsufuji, J.H. Chung, S. Park, S.-W. Cheong, and C. Broholm, “Frustrate Magnetism and Cooperative Phase Transitions in Spinels,” J. Phys. Soc. Japan, vol. 79, p. 011004, 2010. [CrossRef] [Google Scholar]
  • G.H. Wannier, “Antiferromagnetism - the Triangular Ising Net,” Phys. Rev., vol. 79, p. 357, 1950. [CrossRef] [Google Scholar]
  • R. Moessner and J.T. Chalker, “Properties of a classical spin liquid: The Heisenberg pyrochlore antiferromagnet,” Phys. Rev. Lett., vol. 80, p. 2929, 1998. [CrossRef] [Google Scholar]
  • R. Moessner and J.T. Chalker, “Low-temperature properties of classical geometrically frustrated antiferromagnets,” Phys. Rev. B, vol. 58, p. 12049, 1998. [CrossRef] [Google Scholar]
  • D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, “Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets,” Nature Physics, vol. 3, p. 487, 2007. [CrossRef] [Google Scholar]
  • M. Mourigal, M. Enderle, B. Fåk, R.K. Kremer, J.M. Law, A. Schneidewind, A. Hiess, and A. Prokofiev, “Evidence of a bond-nematic phase in LiCuVO4,” Phys. Rev. Lett., vol. 109, p. 027203, 2012. [CrossRef] [Google Scholar]
  • J. Villain, “Insulating spin glasses,” Z. Phys. B, vol. 33, p. 31, 1979. [Google Scholar]
  • S. Ji, S.-H. Lee, C. Broholm, T.Y. Koo, W. Ratcliff, S.-W. Cheong, and P. Zschack, “Spin-Lattice Order in Frustrated ZnCr2O4,” Phys. Rev. Lett., vol. 103, p. 037201, 2009. [CrossRef] [Google Scholar]
  • B. Fåk, in conversation. [Google Scholar]
  • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering. Dover Publications, Inc., New York, 1978. [Google Scholar]
  • X.-G. Wen, “Quantum orders and symmetric spin liquids,” Phys. Rev. B, vol. 65, p. 165113, 2002. [CrossRef] [Google Scholar]
  • D.J. Thouless, Topological quantum numbers in nonrelativistic physics. World Scientific, Singapore, 1998. [Google Scholar]
  • G.E. Volovik, “Topology of Quantum Vacuum,” Lecture Notes in Physics, vol. 870, p. 343, 2012. [Google Scholar]
  • G.E. Volovik, The Universe in a helium droplet. Oxford University Press, Oxford, 2009. [CrossRef] [Google Scholar]
  • M.J.P. Gingras, Spin Ice, in Introduction to Frustrated Magnetism: Materials, Experiments, Theory. Springer Series in Solid-State Sciences, Berlin, 2011. [Google Scholar]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Magnetic monopoles in spin ice,” Nature, vol. 451, p. 42, 2008. [Google Scholar]
  • M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, and K.W. Godfrey, “Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7,” Phys. Rev. Lett., vol. 79, p. 2554, 1997. [CrossRef] [Google Scholar]
  • S.T. Bramwell and M.J. Harris, “Frustration in Ising-type spin models on the pyrochlore lattice,” J. Phys.: Condens. Matter, vol. 10, p. L215, 1998. [CrossRef] [Google Scholar]
  • P.W. Anderson, “Ordering and antiferromagnetism in ferrites,” Physical Review, vol. 102, p. 1008, 1956. [CrossRef] [Google Scholar]
  • W.F. Giauque and J.W. Stout, “The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273 K,” J. Am. Chem. Soc., vol. 58, pp. 1144–1150, 1936. [NASA ADS] [CrossRef] [Google Scholar]
  • A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, “Zero-point entropy in ‘spin ice’,” Nature, vol. 399, p. 333, 1999. [Google Scholar]
  • S.T. Bramwell, M.J. Harris, B.C. den Hertog, M.J.P. Gingras, J.S. Gardner, D.F. McMorrow, A.R. Wildes, A.L. Cornelius, J.D.M. Champion, R.G. Melko, and T. Fennell, “Spin correlations in Ho2Ti2O7: A dipolar spin ice system,” Phys. Rev. Lett., vol. 87, p. 047205, 2001. [CrossRef] [PubMed] [Google Scholar]
  • R. Moessner, “Relief and generation of frustration in pyrochlore magnets by single-ion anisotropy,” Phys. Rev. B, vol. 57, p. 5587, 1998. [CrossRef] [Google Scholar]
  • S.V. Isakov, K. Gregor, R. Moessner, and S.L. Sondhi, “Dipolar spin correlations in classical pyrochlore magnets,” Phys. Rev. Lett., vol. 93, p. 167204, 2004. [CrossRef] [PubMed] [Google Scholar]
  • C.L. Henley, “Power-law spin correlations in pyrochlore antiferromagnets,” Phys. Rev. B, vol. 71, p. 014424, 2005. [Google Scholar]
  • T.S. Pickles, T.E. Saunders, and J.T. Chalker, “Néel ordering from the Coulomb phase,” EPL, vol. 84, p. 36002, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
  • P. Conlon and J.T. Chalker, “Spin Dynamics in Pyrochlore Heisenberg Antiferromagnets,” Phys. Rev. Lett., vol. 102, p. 237206, 2009. [CrossRef] [Google Scholar]
  • P.H. Conlon and J.T. Chalker, “Absent pinch points and emergent clusters: Further neighbor interactions in the pyrochlore Heisenberg antiferromagnet,” Phys. Rev. B, vol. 81, p. 224413, 2010. [CrossRef] [Google Scholar]
  • M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, “Oxide Pyrochlores - a Review,” Prog. Sol. St. Chem., vol. 15, p. 55, 1983. [CrossRef] [Google Scholar]
  • B.M. Wanklyn and G. Garton, “Crystal growth and magnetic susceptibility of some rare-earth compounds,” J. Mat. Sci., vol. 3, p. 395, 1968. [CrossRef] [Google Scholar]
  • G. Balakrishnan, O.A. Petrenko, M.R. Lees, and D.M. Paul, “Single crystal growth of rare earth titanate pyrochlores,” J. Phys.: Condens. Matt., vol. 10, p. L723, 1998. [CrossRef] [Google Scholar]
  • D. Prabhakaran and A.T. Boothroyd, “Crystal growth of spin-ice pyrochlores by the floating-zone method,” J. Cryst. Growth, vol. 318, p. 1053, 2011. [CrossRef] [Google Scholar]
  • G. Ehlers, A. Huq, S.O. Diallo, C. Adriano, K.C. Rule, A.L. Cornelius, P. Fouquet, P.G. Pagliuso, and J.S. Gardner, “Low energy spin dynamics in the spin ice Ho2Sn2O7,” J. Phys.: Cond. Matt., vol. 24, p. 076005, 2012. [CrossRef] [Google Scholar]
  • A.M. Hallas, J.A.M. Paddison, H.J. Silverstein, A.L. Goodwin, J.R. Stewart, A.R. Wildes, J.G. Cheng, J.S. Zhou, J.B. Goodenough, E.S. Choi, G. Ehlers, J.S. Gardner, C.R. Wiebe, and H.D. Zhou, “Statics and dynamics of the highly correlated spin ice Ho2Ge2O7,” Phys. Rev. B, vol. 86, p. 134431, 2012. [CrossRef] [Google Scholar]
  • H.D. Zhou, S.T. Bramwell, J.-G. Cheng, C.R. Wiebe, G. Li, L. Balicas, J.A. Bloxsom, H.J. Silverstein, J.-S. Zhou, J.B. Goodenough, and J.S. Gardner, “High pressure route to generate magnetic monopole dimers in spin ice,” Nat. Comm., vol. 2, p. 478, 2011. [CrossRef] [Google Scholar]
  • H.D. Zhou, J.G. Cheng, A.M. Hallas, C.R. Wiebe, G. Li, L. Balicas, J.S. Zhou, J.B. Goodenough, J.S. Gardner, and E.S. Choi, “Chemical Pressure Effects on Pyrochlore Spin Ice,” Phys. Rev. Lett., vol. 108, 2012. [Google Scholar]
  • J. Lago, I. Zivkovic, B.Z. Malkin, J. Rodriguez Fernandez, P. Ghigna, P. Dalmas de Réotier, A. Yaouanc, and T. Rojo, “CdEr2Se4: A New Erbium Spin Ice System in a Spinel Structure,” Phys. Rev. Lett., vol. 104, p. 247203, 2010. [CrossRef] [Google Scholar]
  • R.J. Aldus, T. Fennell, P.P. Deen, E. Ressouche, G.C. Lau, R.J. Cava, and S.T. Bramwell, “Ice rule correlations in stuffed spin ice,” New J. Phys., vol. 15, p. 013022, 2013. [CrossRef] [Google Scholar]
  • J.A.M. Paddison and A.L. Goodwin, “Empirical Magnetic Structure Solution of Frustrated Spin Systems,” Phys. Rev. Lett., vol. 108, p. 017204, 2012. [CrossRef] [PubMed] [Google Scholar]
  • S. Rosenkranz, A. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, “Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7,” J. Appl. Phys., vol. 87, p. 5914, 2000. [CrossRef] [Google Scholar]
  • H. Cao, A. Gukasov, I. Mirebeau, P. Bonville, C. Decorse, and G. Dhalenne, “Ising versus XY Anisotropy in Frustrated R2Ti2O7 Compounds as “Seen” by Polarized Neutrons,” Phys. Rev. Lett., vol. 103, p. 056402, 2009. [CrossRef] [PubMed] [Google Scholar]
  • B.C. den Hertog and M.J.P. Gingras, “Dipolar interactions and origin of spin ice in Ising pyrochlore magnets,” Phys. Rev. Lett., vol. 84, p. 3430, 2000. [CrossRef] [PubMed] [Google Scholar]
  • R.G. Melko, B.C. den Hertog, and M.J.P. Gingras, “Long-range order at low temperatures in dipolar spin ice,” Phys. Rev. Lett., vol. 87, p. 067203, 2001. [CrossRef] [Google Scholar]
  • T. Yavors'kii, T. Fennell, M.J.P. Gingras, and S.T. Bramwell, “Dy2Ti2O7 Spin Ice: A Test Case for Emergent Clusters in a Frustrated Magnet,” Phys. Rev. Lett., vol. 101, p. 37204, 2008. [CrossRef] [Google Scholar]
  • T. Fennell, O.A. Petrenko, B. Fåk, S.T. Bramwell, M. Enjalran, T. Yavors'kii, M.J.P. Gingras, R.G. Melko, and G. Balakrishnan, “Neutron Scattering Investigation of the Spin Ice State in Dy2Ti2O7,” Phys. Rev. B, vol. 70, p. 134408, 2004. [CrossRef] [Google Scholar]
  • M.J.P. Gingras and B.C. den Hertog, “Origin of spin-ice behavior in ising pyrochlore magnets with long-range dipole interactions: an insight from mean-field theory,” Can. J. Phys., vol. 79, p. 1339, 2001. [CrossRef] [Google Scholar]
  • S.V. Isakov, R. Moessner, and S.L. Sondhi, “Why spin ice obeys the ice rules,” Phys. Rev. Lett., vol. 95, p. 217201, 2005. [CrossRef] [PubMed] [Google Scholar]
  • T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. Mcmorrow, and S.T. Bramwell, “Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7,” Science, vol. 326, p. 415, 2009. [CrossRef] [PubMed] [Google Scholar]
  • D.A. Huse, W. Krauth, R. Moessner, and S.L. Sondhi, “Coulomb and liquid dimer models in three dimensions,” Phys. Rev. Lett., vol. 91, p. 167004, 2003. [CrossRef] [Google Scholar]
  • R. Moessner and S.L. Sondhi, “Three-dimensional resonating-valence-bond liquids and their excitations,” Phys. Rev. B, vol. 68, p. 184512, 2003. [CrossRef] [Google Scholar]
  • D. Charrier and F. Alet, “Phase diagram of an extended classical dimer model,” Phys. Rev. B, vol. 82, p. 014429, 2010. [CrossRef] [Google Scholar]
  • A.M. Läuchli, S. Capponi, and F.F. Assaad, “Dynamical dimer correlations at bipartite and non-bipartite Rokhsar-Kivelson points,” J. Stat. Mech., p. P01010, 2008. [Google Scholar]
  • I.A. Ryzhkin, “Magnetic relaxation in rare-earth oxide pyrochlores,” Journal Of Experimental And Theoretical Physics, vol. 101, p. 481, 2005. [CrossRef] [Google Scholar]
  • Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, and B. Fåk, “Kagome ice state in the dipolar spin ice Dy2Ti2O7,” Phys. Rev. Lett., vol. 97, p. 257205, 2006. [CrossRef] [Google Scholar]
  • T. Fennell, S.T. Bramwell, D.F. Mcmorrow, P. Manuel, and A.R. Wildes, “Pinch points and Kasteleyn transitions in kagome ice,” Nat. Phys., vol. 3, p. 566, 2007. [CrossRef] [Google Scholar]
  • R.W. Youngblood and J.D. Axe, “Neutron-scattering study of short-range order in a model two-dimensional ferroelectric,” Phys. Rev. B, vol. 17, p. 3639, 1978. [CrossRef] [Google Scholar]
  • R.W. Youngblood, J.D. Axe, and B.M. McCoy, “Correlations in ice-rule ferroelectrics,” Phys. Rev. B, vol. 21, p. 5212, 1980. [CrossRef] [Google Scholar]
  • R.W. Youngblood and J.D. Axe, “Polarization fluctuations in ferroelectric models,” Phys. Rev. B, vol. 23, p. 232, 1981. [CrossRef] [Google Scholar]
  • V.M. Nield and R.W. Whitworth, “The structure of ice Ih from analysis of single-crystal neutron diffuse scattering,” J. Phys.: Cond. Matt., vol. 7, p. 8259, 1995. [CrossRef] [Google Scholar]
  • “Recent x-ray scattering measurements seem not to show a pinchpoint, Vanko et al, ESRF Christmas Card, 2011.” [Google Scholar]
  • S. Yoshida, K. Nemoto, and K. Wada, “Application of the cluster variation method to spin ice systems on the pyrochlore lattice,” J. Phys. Soc. Jpn., vol. 71, p. 948, 2002. [CrossRef] [Google Scholar]
  • D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R.S. Perry, “Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7,” Science, vol. 326, p. 411, 2009. [CrossRef] [PubMed] [Google Scholar]
  • S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, and S.-W. Cheong, “Emergent excitations in a geometrically frustrated magnet,” Nature, vol. 418, p. 856, 2002. [CrossRef] [PubMed] [Google Scholar]
  • K. Tomiyasu, H. Suzuki, M. Toki, S. Itoh, M. Matsuura, N. Aso, and K. Yamada, “Molecular Spin Resonance in the Geometrically Frustrated Magnet MgCr2O4 by Inelastic Neutron Scattering,” Phys. Rev. Lett., vol. 101, p. 177401, 2008. [CrossRef] [Google Scholar]
  • K. Tomiyasu, H. Ueda, M. Matsuda, M. Yokoyama, K. Iwasa, and K. Yamada, “Molecular spin-liquid state in the spin-3/2 frustrated spinel HgCr2O4,” Phys. Rev. B, vol. 84, p. 035115, 2011. [CrossRef] [Google Scholar]
  • K. Kamazawa, S. Park, S.-H. Lee, T. Sato, and Y. Tsunoda, “Dissociation of spin objects in geometrically frustrated CdFe2O4,” Phys. Rev. B, vol. 70, p. 024418, 2004. [CrossRef] [Google Scholar]
  • J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T.J. Sato, H. Takagi, K.-P. Hong, and S. Park, “Statics and Dynamics of Incommensurate Spin Order in a Geometrically Frustrated Antiferromagnet CdCr2O4,” Physical Review Letters, vol. 95, p. 247204, Dec. 2005. [CrossRef] [Google Scholar]
  • L.J. Chang, Y. Su, Y.-J. Kao, Y.Z. Chou, R. Mittal, H. Schneider, T. Brueckel, G. Balakrishan, and M.R. Lees, “Magnetic correlations in the spin ice Ho2−xYxTi2O7 as revealed by neutron polarization analysis,” Phys. Rev. B, vol. 82, p. 172403, 2010. [CrossRef] [Google Scholar]
  • P.A.M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A, vol. 133, p. 60, 1931. [Google Scholar]
  • A. Rajantie, “Introduction to magnetic monopoles,” Cont. Phys., vol. 53, p. 195, 2012. [Google Scholar]
  • L.D.C. Jaubert and P.C.W. Holdsworth, “Signature of magnetic monopole and Dirac string dynamics in spin ice,” Nature Physics, vol. 5, p. 258, 2009. [CrossRef] [Google Scholar]
  • T. Fennell, O.A. Petrenko, B. Fåk, J.S. Gardner, S.T. Bramwell, and B. Ouladdiaf, “Neutron scattering studies of the spin ices Ho2Ti2O7 and Dy2Ti2O7 in applied magnetic field,” Phys. Rev. B, vol. 72, p. 224411, 2005. [CrossRef] [Google Scholar]
  • L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, and R. Moessner, “Three-dimensional Kasteleyn transition: Spin ice in a [100] field,” Phys. Rev. Lett., vol. 100, p. 067207, 2008. [CrossRef] [PubMed] [Google Scholar]
  • R.B. Laughlin and D. Pines, “The theory of everything,” PNAS, vol. 97, p. 28, 2000. [CrossRef] [Google Scholar]
  • P.W. Anderson, “More is Different - Broken Symmetry and Nature of Hierarchical Structure of Science,” Science, vol. 177, p. 393, 1972. [CrossRef] [PubMed] [Google Scholar]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Thermal Quenches in Spin Ice,” Phys. Rev. Lett., vol. 104, p. 107201, 2010. [CrossRef] [PubMed] [Google Scholar]
  • C. Castelnovo, R. Moessner, and S.L. Sondhi, “Debye-Hückel theory for spin ice at low temperature,” Phys. Rev. B, vol. 84, 2011. [CrossRef] [Google Scholar]
  • G. Sala, C. Castelnovo, R. Moessner, S.L. Sondhi, K. Kitagawa, M. Takigawa, R. Higashinaka, and Y. Maeno, “Magnetic Coulomb Fields of Monopoles in Spin Ice and Their Signatures in the Internal Field Distribution,” Phys. Rev. Lett., vol. 108, 2012. [CrossRef] [Google Scholar]
  • I.A. Ryzhkin, A.V. Klyuev, M.I. Ryzhkin, and I.V. Tsybulin, “Stability of the Coulomb phase in spin ice at finite temperature,” JETP Lett., vol. 95, p. 302, 2012. [CrossRef] [Google Scholar]
  • I.A. Ryzhkin and M.I. Ryzhkin, “Screening of the magnetic field by magnetic monopoles in spin ice,” JETP Lett., vol. 93, p. 384, 2011. [CrossRef] [Google Scholar]
  • P. Quémerais, P.A. McClarty, and R. Moessner, “Possible Quantum Diffusion of Polaronic Muons in Dy2Ti2O7 Spin Ice,” Phys. Rev. Lett., vol. 109, p. 127601, 2012. [CrossRef] [Google Scholar]
  • S.T. Bramwell, “Dimensional analysis, spin freezing and magnetization in spin ice,” J. Phys.: Cond. Matt., vol. 23, p. 112201, 2011. [CrossRef] [Google Scholar]
  • S.T. Bramwell, “Generalised Longitudinal Susceptibility for Magnetic Monopoles in Spin Ice,” Phil. Trans. Roy. Soc. A, vol. 370, p. 5738, 2012. [CrossRef] [Google Scholar]
  • C.L. Henley, arXiv:1210.8137. 2012. [Google Scholar]
  • H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, and Z. Hiroi, “Observation of Magnetic Monopoles in Spin Ice,” J. Phys. Soc. Jpn., vol. 78, p. 103706, 2009. [CrossRef] [Google Scholar]
  • J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, and J.B. Kycia, “Dynamics of the magnetic susceptibility deep in the Coulomb phase of the dipolar spin ice material Ho2Ti2O7,” Phys. Rev. B, vol. 83, p. 094424, 2011. [CrossRef] [Google Scholar]
  • K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, and S. Takagi, “Spin Dynamics at Very Low Temperature in Spin Ice Dy2Ti2O7,” J. Phys. Soc. Jpn., vol. 80, p. 123711, 2011. [CrossRef] [Google Scholar]
  • L.R. Yaraskavitch, H.M. Revell, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B. D. Gaulin, and J.B. Kycia, “Spin dynamics in the frozen state of the dipolar spin ice material Dy2Ti2O7,” Phys. Rev. B, vol. 85, 2012. [CrossRef] [Google Scholar]
  • D. Slobinsky, C. Castelnovo, R.A. Borzi, A.S. Gibbs, A.P. Mackenzie, R. Moessner, and S.A. Grigera, “Unconventional Magnetization Processes and Thermal Runaway in Spin-Ice Dy2Ti2O7,” Phys. Rev. Lett., vol. 105, p. 267205, 2010. [CrossRef] [PubMed] [Google Scholar]
  • S.R. Giblin, S.T. Bramwell, P.C.W. Holdsworth, D. Prabhakaran, and I. Terry, “Creation and measurement of long-lived magnetic monopole currents in spin ice,” Nat. Phys., vol. 7, p. 252, 2011. [CrossRef] [Google Scholar]
  • S. Erfanifam, S. Zherlitsyn, J. Wosnitza, R. Moessner, O.A. Petrenko, G. Balakrishnan, and A.A. Zvyagin, “Intrinsic and extrinsic nonstationary field-driven processes in the spin-ice compound Dy2Ti2O7,” Phys. Rev. B, vol. 84, 2011. [CrossRef] [Google Scholar]
  • S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, “Measurement of the charge and current of magnetic monopoles in spin ice,” Nature, vol. 461, p. 956, 2009. [CrossRef] [Google Scholar]
  • S.R. Dunsiger, A.A. Aczel, C. Arguello, H.A. Dabkowska, A. Dabkowski, M.-H. Du, T. Goko, B. Javanparast, T. Lin, F.L. Ning, H.M.L. Noad, D.J. Singh, T.J. Williams, Y.J. Uemura, M.J.P. Gingras, and G.M. Luke, “Spin Ice: Magnetic Excitations without Monopole Signatures Using Muon Spin Rotation,” Phys. Rev. Lett., vol. 107, 2011. [CrossRef] [Google Scholar]
  • B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S.A. Grigera, and D.A. Tennant, “Thermal Relaxation and Heat Transport in the Spin Ice Material Dy2Ti2O7,” J. Low Temp. Phys., vol. 163, p. 345, 2011. [CrossRef] [Google Scholar]
  • G. Kolland, O. Breunig, M. Valldor, M. Hiertz, J. Frielingsdorf, and T. Lorenz, “Thermal conductivity and specific heat of the spin-ice compound Dy2Ti2O7: Experimental evidence for monopole heat transport,” Phys. Rev. B, vol. 86, p. 060402, 2012. [CrossRef] [Google Scholar]
  • M. Hermele, M.P.A. Fisher, and L. Balents, “Pyrochlore photons: The U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet,” Phys. Rev. B, vol. 69, p. 064404, 2004. [CrossRef] [Google Scholar]
  • K.A. Ross, L. Savary, B.D. Gaulin, and L. Balents, “Quantum Excitations in Quantum Spin Ice,” Physical Review X, vol. 1, p. 021002, 2011. [CrossRef] [Google Scholar]
  • L. Savary and L. Balents, “Coulombic Quantum Liquids in Spin-1/2 Pyrochlores,” Phys. Rev. Lett., vol. 108, 2012. [Google Scholar]
  • O. Benton, O. Sikora, and N. Shannon, “Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice,” Phys. Rev. B, vol. 86, p. 075154, 2012. [CrossRef] [Google Scholar]
  • J.D. Thompson, P.A. McClarty, H.M. Rønnow, L.P. Regnault, A. Sorge, and M.J.P. Gingras, “Rods of Neutron Scattering Intensity in Yb2Ti2O7: Compelling Evidence for Significant Anisotropic Exchange in a Magnetic Pyrochlore Oxide,” Phys. Rev. Lett., vol. 106, p. 187202, 2011. [CrossRef] [Google Scholar]
  • J.A. Hodges, P. Bonville, A. Forget, M. Rams, K. Królas, and G. Dhalenne, “The crystal field and exchange interactions in Yb2Ti2O7,” J. Phys.: Cond. Matt., vol. 13, p. 9301, 2001. [CrossRef] [Google Scholar]
  • J.A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dalmas de Réotier, G. André, M. Rams, K. Królas, C. Ritter, P.C.M. Gubbens, C.T. Kaiser, P.J.C. King, and C. Baines, “First-Order Transition in the Spin Dynamics of Geometrically Frustrated Yb2Ti2O7,” Phys. Rev. Lett., vol. 88, p. 077204, 2002. [CrossRef] [PubMed] [Google Scholar]
  • Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsushita, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, “Ferromagnetic Transition of Pyrochlore Compound Yb2Ti2O7,” J. Phys. Soc. Jpn., vol. 72, p. 3014, 2003. [CrossRef] [Google Scholar]
  • J.S. Gardner, G. Ehlers, N. Rosov, R.W. Erwin, and C. Petrovic, “Spin-spin correlations in Yb2Ti2O7: A polarized neutron scattering study,” Phys. Rev. B, vol. 70, p. 180404, 2004. [CrossRef] [Google Scholar]
  • A. Yaouanc, P. Dalmas de Réotier, C. Marin, and V. Glazkov, “Single-crystal versus polycrystalline samples of magnetically frustrated Yb2Ti2O7: Specific heat results,” Phys. Rev. B, vol. 84, p. 172408, 2011. [CrossRef] [Google Scholar]
  • K.A. Ross, T. Proffen, H.A. Dabkowska, J.A. Quilliam, L.R. Yaraskavitch, J.B. Kycia, and B.D. Gaulin, “Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique,” Phys. Rev. B, vol. 86, p. 174424, 2012. [CrossRef] [Google Scholar]
  • L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai, and M.R. Lees, “Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7,” Nat. Comm., vol. 3, p. 992, 2012. [CrossRef] [Google Scholar]
  • K.A. Ross, J.P.C. Ruff, C.P. Adams, J.S. Gardner, H.A. Dabkowska, Y. Qiu, J.R.D. Copley, and B.D. Gaulin, “Two-Dimensional Kagome Correlations and Field Induced Order in the Ferromagnetic XY Pyrochlore Yb2Ti2O7,” Phys. Rev. Lett., vol. 103, p. 227202, 2009. [CrossRef] [PubMed] [Google Scholar]
  • K.A. Ross, L.R. Yaraskavitch, M. Laver, J.S. Gardner, J.A. Quilliam, S. Meng, J.B. Kycia, D.K. Singh, T. Proffen, H.A. Dabkowska, and B.D. Gaulin, “Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7,” Phys. Rev. B, vol. 84, p. 174442, 2011. [CrossRef] [Google Scholar]
  • R. Applegate, N.R. Hayre, R.R.P. Singh, T. Lin, A.G.R. Day, and M.J.P. Gingras, “Vindication of Yb2Ti2O7 as a Model Exchange Quantum Spin Ice,” Phys. Rev. Lett., vol. 109, p. 097205, 2012. [CrossRef] [Google Scholar]
  • R. Coldea, D.A. Tennant, K. Habicht, P. Smeibidl, C. Wolters, and Z. Tylczynski, “Direct Measurement of the Spin Hamiltonian and Observation of Condensation of Magnons in the 2D Frustrated Quantum Magnet Cs2CuCl4,” Phys. Rev. Lett., vol. 88, p. 137203, 2002. [CrossRef] [PubMed] [Google Scholar]
  • K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, and T. Sakakibara, “Low-temperature magnetic properties of pyrochlore stannates,” J. Phys. Soc. Japan, vol. 71, p. 1576, 2002. [CrossRef] [Google Scholar]
  • Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, “Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order,” Nature, vol. 463, p. 210, 2010. [CrossRef] [PubMed] [Google Scholar]
  • H.D. Zhou, C.R. Wiebe, J.A. Janik, L. Balicas, Y.J. Yo, Y. Qiu, J.R.D. Copley, and J.S. Gardner, “Dynamic Spin Ice: Pr2Sn2O7,” Phys. Rev. Lett., vol. 101, p. 227204, 2008. [CrossRef] [Google Scholar]
  • K. Matsuhira, C. Sekine, C. Paulsen, and Y. Hinatsu, “Low-temperature magnetic properties of the geometrically frustrated pyrochlore Pr2Sn2O7,” J. Mag. Mag. Mat., vol. 272, p. E981, 2004. [CrossRef] [Google Scholar]
  • S.B. Lee, S. Onoda, and L. Balents, “Generic quantum spin ice,” Phys. Rev. B, vol. 86, p. 104412, 2012. [CrossRef] [Google Scholar]
  • S. Onoda and Y. Tanaka, “Quantum Melting of Spin Ice: Emergent Cooperative Quadrupole and Chirality,” Phys. Rev. Lett., vol. 105, p. 047201, 2010. [CrossRef] [PubMed] [Google Scholar]
  • S. Onoda and Y. Tanaka, “Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides,” Phys. Rev. B, vol. 83, p. 094411, 2011. [CrossRef] [Google Scholar]
  • S. Saha, Sand Prusty, S. Singh, R. Suryanarayanan, A. Revcolevschi, and A.K. Sood, “Pyrochlore “dynamic spin-ice” Pr2Sn2O7 and monoclinic Pr2Ti2O7: A comparative temperature-dependent Raman study,” J. Sol. St. Chem., vol. 184, p. 2204, 2011. [CrossRef] [Google Scholar]
  • C.L. Broholm, HFM2012. 2012. [Google Scholar]
  • H.R. Molavian, M.J.P. Gingras, and B. Canals, “Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects,” Phys. Rev. Lett., vol. 98, p. 157204, 2007. [CrossRef] [PubMed] [Google Scholar]
  • J. Robert, B. Canals, V. Simonet, and R. Ballou, “Propagation and ghosts in the classical kagome antiferromagnet,” Phys. Rev. Lett., vol. 101, p. 117207, 2008. [CrossRef] [Google Scholar]
  • S. Schnabel and D.P. Landau, “Fictitious excitations in the classical Heisenberg antiferromagnet on the kagome lattice,” Phys. Rev. B, vol. 86, p. 014413, 2012. [CrossRef] [Google Scholar]
  • J.T. Chalker, P.C.W. Holdsworth, and E.F. Shender, “Hidden Order in a Frustrated System - Properties of the Heisenberg Kagome Antiferromagnet,” Phys. Rev. Lett., vol. 68, p. 855, 1992. [CrossRef] [PubMed] [Google Scholar]
  • M.E. Zhitomirsky, “Octupolar ordering of classical kagome antiferromagnets in two and three dimensions,” Phys. Rev. B, vol. 78, p. 094423, 2008. [CrossRef] [Google Scholar]
  • P. Mendels and A.S. Wills, Kagome antiferromagnets: materials vs. spin liquid behaviours. Springer Series in Solid-State Sciences, Berlin, 2011. [Google Scholar]
  • K. Matan, D. Grohol, D.G. Nocera, T. Yildirim, A.B. Harris, S.-H. Lee, S.E. Nagler, and Y.S. Lee, “Spin Waves in the Frustrated Kagomé Lattice Antiferromagnet KFe3(OH)6(SO4)2,” Phys. Rev. Lett., vol. 96, p. 247201, 2006. [CrossRef] [Google Scholar]
  • D. Grohol, K. Matan, J.-H. Cho, S.-H. Lee, J.W. Lynn, D.G. Nocera, and Y.S. Lee, “Spin chirality on a two-dimensional frustrated lattice,” Nat. Mat., vol. 4, p. 323, 2005. [CrossRef] [PubMed] [Google Scholar]
  • B. Fåk, F.C. Coomer, A. Harrison, D. Visser, and M.E. Zhitomirsky, “Spin liquid behavior in a kagomé antiferromagnet,” EPL, vol. 81, p. 17006, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
  • J. Robert, V. Simonet, B. Canals, R. Ballou, P. Bordet, P. Lejay, and A. Stunault, “Spin-liquid correlations in the Nd-langasite anisotropic kagome antiferromagnet,” Phys. Rev. Lett., vol. 96, p. 197205, 2006. [CrossRef] [Google Scholar]
  • A.S. Wills and J.Y. Henry, “On the crystal and magnetic ordering structures of clinoatacamite, gamma-Cu2 (OD) 3Cl, a proposed valence bond solid,” J. Phys.: Cond. Matt., vol. 20, p. 472206, 2008. [CrossRef] [Google Scholar]
  • M.P. Shores, E.A. Nytko, B.M. Bartlett, and D.G. Nocera, “A Structurally Perfect S = 1/2 Kagomé Antiferromagnet,” J. Am. Chem. Soc., vol. 127, p. 13462, 2007. [CrossRef] [PubMed] [Google Scholar]
  • R.H. Colman, C. Ritter, and A.S. Wills, “Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet,” Chem. Mat., vol. 20, p. 6897, 2008. [CrossRef] [Google Scholar]
  • S. Chu, T.M. McQueen, R. Chisnell, D.E. Freedman, P. Müller, Y.S. Lee, and D.G. Nocera, “A Cu2+(S = 1/2) Kagomé Antiferromagnet: MgxCu4−x(OH)6Cl2,” J. Am. Chem. Soc., vol. 132, p. 5570, 2010. [CrossRef] [Google Scholar]
  • R.H. Colman, A. Sinclair, and A.S. Wills, “Comparisons between Haydeeite, α-Cu3Mg(OD)6Cl2, and Kapellasite, α-Cu3Zn(OD)6Cl2, Isostructural S = 1/2 Kagome Magnets,” Chem. Mat., vol. 22, p. 5774, 2010. [CrossRef] [Google Scholar]
  • R.H. Colman, A. Sinclair, and A.S. Wills, “Magnetic and Crystallographic Studies of Mg-Herbertsmithite, γ-Cu3Mg(OH)6Cl2-A New S = 1/2 Kagome Magnet and Candidate Spin Liquid,” Chem. Mat., vol. 23, p. 1811, 2011. [CrossRef] [Google Scholar]
  • E. Kermarrec, P. Mendels, F. Bert, R.H. Colman, A.S. Wills, P. Strobel, P. Bonville, A. D. Hillier, and A. Amato, “Spin-liquid ground state in the frustrated kagome antiferromagnet MgCu3(OH)6Cl2,” Phys. Rev. B, vol. 84, p. 100401, 2011. [CrossRef] [Google Scholar]
  • D.E. Freedman, T.H. Han, A. Prodi, P. Müller, Q.-Z. Huang, Y.-S. Chen, S.M. Webb, Y. S. Lee, T.M. Mcqueen, and D.G. Nocera, “Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated Kagomé Magnet, Herbertsmithite, ZnCu3(OH)6Cl2,” J. Am. Chem. Soc., vol. 132, p. 16185, 2010. [CrossRef] [Google Scholar]
  • Y.S. Lee, HFM2012. 2012. [Google Scholar]
  • A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Lohneysen, E. Bucher, R. Ramazashvili, and P. Coleman, “Onset of antiferromagnetism in heavy-fermion metals,” Nature, vol. 407, p. 351, 2000. [CrossRef] [PubMed] [Google Scholar]
  • M.C. Aronson, R. Osborn, R.A. Robinson, J.W. Lynn, R. Chau, C.L. Seaman, and M.B. Maple, “Non-Fermi-Liquid Scaling of the Magnetic Response in UCu5−xPdx (x = 1,1.5),” Phys. Rev. Lett., vol. 75, p. 725, 1995. [CrossRef] [Google Scholar]
  • B. Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W. Erwin, M.A. Kastner, and G. Shirane, “Scaling Behaviour of the Generalized Susceptibility in La2−xSrxCuO4+y,” Phys. Rev. Lett., vol. 67, p. 1930, 1991. [CrossRef] [PubMed] [Google Scholar]
  • S.M. Hayden, G. Aeppli, H. Mook, D. Rytz, M.F. Hundley, and Z. Fisk, “Magnetic Fluctuations in La1.95Ba0.05CuO4,” Phys. Rev. Lett., vol. 66, p. 821, 1991. [CrossRef] [PubMed] [Google Scholar]
  • S. Sachdev and J. Ye, “Gapless Spin-Fluid Ground-State in a Random Quantum Heisenberg Magnet,” Phys. Rev. Lett., vol. 70, p. 3339, 1993. [CrossRef] [PubMed] [Google Scholar]
  • S. Sachdev and J. Ye, “Universal Quantum-Critical Dynamics of 2-Dimensional Antiferromagnets,” Phys. Rev. Lett., vol. 69, p. 2411, 1992. [CrossRef] [PubMed] [Google Scholar]
  • T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M.P.A. Fisher, “Deconfined quantum critical points,” Science, vol. 303, p. 1490, 2004. [CrossRef] [PubMed] [Google Scholar]
  • N. Bernhoeft, “An analysis of the dynamical magnetic susceptibility in non-Fermi liquids,” J. Phys.: Cond. Matt., vol. 13, p. R771, 2001. [CrossRef] [Google Scholar]
  • J.S. Helton, K. Matan, M.P. Shores, E.A. Nytko, B.M. Bartlett, Y. Qiu, D.G. Nocera, and Y. S. Lee, “Dynamic Scaling in the Susceptibility of the Spin-1/2 Kagome Lattice Antiferromagnet Herbertsmithite,” Phys. Rev. Lett., vol. 104, p. 147201, 2010. [CrossRef] [Google Scholar]
  • B. Fåk, E. Kermarrec, L. Messio, B. Bernu, C. Lhuillier, F. Bert, P. Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A.D. Hillier, A. Amato, R.H. Colman, and A.S. Wills, “Kapellasite: A Kagome Quantum Spin Liquid with Competing Interactions,” Phys. Rev. Lett., vol. 109, p. 037208, 2012. [CrossRef] [Google Scholar]
  • M.A. De Vries, J.R. Stewart, P.P. Deen, J.O. Piatek, G.J. Nilsen, H.M. Rønnow, and A. Harrison, “Scale-Free Antiferromagnetic Fluctuations in the s = 1/2 Kagome Antiferromagnet Herbertsmithite,” Phys. Rev. Lett., vol. 103, p. 237201, 2009. [CrossRef] [PubMed] [Google Scholar]
  • L. Messio, B. Bernu, and C. Lhuillier, “Kagome Antiferromagnet: A Chiral Topological Spin Liquid?,” Phys. Rev. Lett., vol. 108, 2012. [CrossRef] [Google Scholar]